452 research outputs found

    The end-to-end testbed of the Optical Metrology System on-board LISA Pathfinder

    Full text link
    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This measurement is performed interferometrically by the Optical Metrology System (OMS) on-board LISA Pathfinder. In this paper we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer back-end which is a phasemeter and the processing of the phasemeter output data. Furthermore, 3-axes piezo actuated mirrors are used instead of the free-falling test masses for the characterisation of the dynamic behaviour of the system and some parts of the Drag-free and Attitude Control System (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by Engineering Models of the LTP experiment. In the next steps, further Engineering Models and Flight Models will also be inserted in this testbed and tested against well characterised breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission

    Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics

    Get PDF
    Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process

    Real-time phasefront detector for heterodyne interferometers

    Full text link
    We present a real-time differential phasefront detector sensitive to better than 3 mrad rms, which corresponds to a precision of about 500 pm. This detector performs a spatially resolving measurement of the phasefront of a heterodyne interferometer, with heterodyne frequencies up to approximately 10 kHz. This instrument was developed as part of the research for the LISA Technology Package (LTP) interferometer, and will assist in the manufacture of its flight model. Due to the advantages this instrument offers, it also has general applications in optical metrology

    Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    Full text link
    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.Comment: 13 pages, 6 figures, 2 table

    Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    Get PDF
    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources

    Analog phase lock between two lasers at LISA power levels

    No full text
    This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20 MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 mu W. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60 mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60 mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity

    Components for the LISA local interferometry

    Get PDF
    This article describes some preliminary results on essential components for the LISA interferometry, namely photodiode preamplifiers and voltage references

    Symmetric achromatic low-beta collider interaction region design concept

    Full text link
    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.Comment: 12 pages, 17 figures, to be submitted to Phys. Rev. ST Accel. Beam

    Investigation of noise sources in the LTP interferometer S2-AEI-TN-3028

    No full text
    All breadboards for the LTP interferometer showed an extra noise term that was, until recently, not fully understood. In this report that noise term is investigated in detail. It turns out that it is caused by sidebands on the light. In our lab, these sidebands were caused by nonlinear mixing processes in the power amplifiers that drive the AOM, if electromagnetic interference at a frequency near the operating frequency (ca. 80 MHz) is picked up by the power amplifier. The disturbing nearby frequency is the frequency of the other AOM, with a difference of exactly f_het, causing multiple sidebands at integer multiples of f_het from the carrier. They appear as pairs with a phase relationship that corresponds to phase-modulation (PM). Experiments with a very different electrical setup (in Glasgow) also showed sidebands which demonstrates that they are not caused by peculiarities of the Hannover setup. While the effect of a pair of first-order PM sidebands cancels and causes no harm, only one of the second-order sidebands produces noise which cannot be cancelled by its second-order mirror image. Hence the second-order sidebands are the dominant noise source. Various strategies of mitigation are also investigated. The two most important ones, both of which are already implemented as baseline for the LTP interferometer, are (1) to reduce the sidebands by careful EMC design and dedicated testing, and (2) to stabilize the optical pathlength difference (OPD) between the two fibers with a Piezo device. The combination of these two measures will reduce this error term to insignificance. We have also investigated other noise sources such as laser amplitude noise and beam jitter noise. Laser amplitude noise does have an influence on the total performance of the interferometer. Using a laser amplitude stabilization (part of the baseline), its influence can also be sufficiently reduced. Contrary to earlier worries, we did not find a significant noise contribution from beam jitter noise in conjunction with quadrant photodiodes. As part of this investigation we have also developed a mathematical model for the sideband coupling that fully describes their effect and has been experimentally verified. Furthermore we have developed various numerical procedures to find correlations between auxiliary data streams (such as alignment signals) and the main interferometer output. They are useful for diagnostic purposes, but in general too complex to implement on LTP. Using only those procedures that are the baseline for the FM, the noise performance of the LTP EM interferometer in the lab is now well below its specifications at all frequencies, with remaining noise sources mainly driven by ground-based disturbances, such that we are confident that the LTP interferometer will perform well on orbit and will enable the detailed study of the behaviour and noise performance of the inertial sensor and DFACS systems, which indeed is the primary job of the interferometer. Comment of the Author: Version 1.2 2008/07/0

    Subtraction of test mass angular noise in the LISA Technology Package interferometer

    Full text link
    We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008
    • …
    corecore